25 research outputs found

    Human Mars Architecture

    Get PDF
    No abstract availabl

    Mission Benefits of Gridded Ion and Hall Thruster Hybrid Propulsion Systems

    Get PDF
    The NASA In-Space Propulsion Technology (ISPT) Project Office has been developing the NEXT gridded ion thruster system and is planning to procure a low power Hall system. The new ion propulsion systems will join NSTAR as NASA's primary electric propulsion system options. Studies have been performed to show mission benefits of each of the stand alone systems. A hybrid ion propulsion system (IPS) can have the advantage of reduced cost, decreased flight time and greater science payload delivery over comparable homogeneous systems. This paper explores possible advantages of combining various thruster options for a single mission

    Altair Lunar Lander Consumables Management

    Get PDF
    The Altair lunar lander is scheduled to return humans to the moon in the year 2020. Keeping the crew of 4 and the vehicle functioning at their best while minimizing lander mass requires careful budgeting and management of consumables and cooperation with other constellation elements. Consumables discussed here include fluids, gasses, and energy. This paper presents the lander's missions and constraints as they relate to consumables and the design solutions that have been employed in recent Altair conceptual designs

    Lunar Lander Deployment

    Get PDF
    No abstract availabl

    Human Mars Lander Design Drivers and Challenges

    Get PDF
    No abstract availabl

    Combining Solar Electric and Chemical Propulsion for Crewed Missions to Mars

    Get PDF
    This paper documents the results of an investigation of human Mars mission architectures that leverage near-term technology investments and infrastructures resulting from the planned Asteroid Redirect Mission, including high-power Solar Electric Propulsion (SEP) and a human presence in Lunar Distant Retrograde Orbit (LDRO). The architectures investigated use a combination of SEP and chemical propulsion elements. Through this combination of propulsion technologies, these architectures take advantage of the high efficiency SEP propulsion system to deliver cargo, while maintaining the faster trip times afforded by chemical propulsion for crew transport. Evolved configurations of the Asteroid Redirect Vehicle (ARV) are considered for cargo delivery. Sensitivities to SEP system design parameters, including power level and propellant quantity, are presented. For the crew delivery, liquid oxygen and methane stages were designed using engines common to future human Mars landers. Impacts of various Earth departure orbits, Mars loiter orbits, and Earth return strategies are presented. The use of the Space Launch System for delivery of the various architecture elements was also investigated and launch vehicle manifesting, launch scheduling and mission timelines are also discussed. The study results show that viable Mars architecture can be constructed using LDRO and SEP in order to take advantage of investments made in the ARM mission

    NASAs Human Landing System: The Strategy for the 2024 Mission and Future Sustainability

    Get PDF
    In response to the 2018 White House Space Policy Directive- sustainable lunar exploration, and to the Vice Presidents March 2019 direction to do so by 2024, NASA is working to establish humanity's presence on and around the Moon by: 1) sending payloads to its surface, 2) assembling the Gateway outpost in orbit and 3) demonstrating the first human lunar landings since 1972. NASAs Artemis program is implementing a multi-faceted and coordinated agency-wide approach with a focus on the lunar South Pole. The Artemis missions will demonstrate new technologies, capabilities and business approaches needed for future exploration, including Mars. Assessing options to accelerate development of required systems, NASA is utilizing public-private engagements through the Human Exploration and Operations (HEO) Mission Directorates NextSTEP Broad Agency Announcements. The design, development and demonstration of the Human Landing System (HLS) is expected to be led by commercial partners. Utilizing efforts across mission directorates, the Artemis effort will benefit from programs from the Science Mission Directorate (SMD) and Space Technology Mission Directorate (STMD). SMDs Commercial Lunar Payload Services (CLPS) initiative will procure commercial robotic lunar delivery services and the development of science instruments and technology demonstration payloads. The Space Technology Mission Directorate (STMD) portfolio of technology advancements relative to HLS include lunar lander components and technologies for pointing, navigation and tracking, fuel storage and transfer, autonomy and mobility, communications, propulsion and power. In addition to describing the objectives and requirements of the 2024 Artemis mission, this paper will present NASAs approach to accessing the lunar surface with an affordable human-rated landing system, current status and the role o a sustainable lunar presence

    In-Space Transportation for NASA's Evolvable Mars Campaign

    Get PDF
    As the nation embarks on a new and bold journey to Mars, significant work is being done to determine what that mission and those architectural elements will look like. The Evolvable Mars Campaign, or EMC, is being evaluated as a potential approach to getting humans to Mars. Built on the premise of leveraging current technology investments and maximizing element commonality to reduce cost and development schedule, the EMC transportation architecture is focused on developing the elements required to move crew and equipment to Mars as efficiently and effectively as possible both from a performance and a programmatic standpoint. Over the last 18 months the team has been evaluating potential options for those transportation elements. One of the key aspects of the EMC is leveraging investments being made today in missions like the Asteroid Redirect Mission (ARM) mission using derived versions of the Solar Electric Propulsion (SEP) propulsion systems and coupling them with other chemical propulsion elements that maximize commonality across the architecture between both transportation and Mars operations elements. This paper outlines the broad trade space being evaluated including the different technologies being assessed for transportation elements and how those elements are assembled into an architecture. Impacts to potential operational scenarios at Mars are also investigated. Trades are being made on the size and power level of the SEP vehicle for delivering cargo as well as the size of the chemical propulsion systems and various mission aspects including Inspace assembly and sequencing. Maximizing payload delivery to Mars with the SEP vehicle will better support the operational scenarios at Mars by enabling the delivery of landers and habitation elements that are appropriately sized for the mission. The purpose of this investigation is not to find the solution but rather a suite of solutions with potential application to the challenge of sending cargo and crew to Mars. The goal is that, by building an architecture intelligently with all aspects considered, the sustainable Mars program wisely invests limited resources enabling a long-term human Mars exploration program

    Mission to Mars: Connecting Diverse Student Groups with NASA Experts

    Get PDF
    The Museum of Science and Industry in Chicago has formulated an innovative approach to inspiring the next generation to pursue STEM education. Middle school students in Chicago and at nearby Challenger Learning Centers work in teams to design a mission to Mars. Each mission includes real time access to NASA experts through partnerships with Marshall Space Flight Center, Johnson Space Center, and the Jet Propulsion Laboratory. Interactive videoconferencing connects students at the museum with students at a Challenger Learning Center and with NASA experts. This paper describes the approach, the results from the program s first year, and future opportunities for nationwide expansion
    corecore